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1 Introduction

The physics of flavor and CP violation could be rich with deviations from the Standard

Model predictions if supersymmetry is realized at the TeV scale, and if the mechanism

that mediates its breaking to the minimal supersymmetric standard model (MSSM) is not

minimally flavor violating (MFV). Indeed, hybrid models of gauge- and gravity-mediation

can lead to flavor violating effects large enough to be explored by the LHC experiment [1, 2].

It is the purpose of this work to study whether the flavor- and CP-violating effects expected

in this framework can be discovered in decays of D, Bd and Bs mesons.

The basic idea of the hybrid gauge-gravity models is the following. There are gauge-

mediated contributions to the soft supersymmetry breaking terms. If the scale of gauge

mediation is low, then the gravity-mediated contributions are negligible, and the model is

MFV. If the scale is very high, then the gravity-mediated contributions dominate, and it re-

quires a very careful model building to suppress the supersymmetric contributions to flavor
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changing neutral current (FCNC) processes [3]. There is, however, an intermediate range

for the scale of gauge mediation where the gravity-mediated contributions are neither neg-

ligible nor dominant [4]. For this range of scales, the Froggatt-Nielsen (FN) mechanism [5]

— an approximate horizontal Abelian symmetry – can play a role in suppressing the squark

and slepton mixing in a simple and natural way [6, 7].

If the ATLAS/CMS experiments can measure the mass splitting between squarks or

sleptons, we will learn about the relative importance of the gauge- and gravity-mediated

contributions and thereby on the gauge mediation scale. If these experiments can measure

the flavor decomposition of squarks and sleptons, the FN framework can be tested and we

may further learn about the way that the FN symmetry is implemented. Here we would

like to ask whether the (present and future) B-factories, the TeVatron experiments and the

LHCb experiment can give early hints to this framework, before direct squark and slepton

measurements are achieved.

The paper is organized as follows. We review FCNC constraints in SUSY models in

section 2. In section 3 we work out the flavor-violating low energy couplings in the hybrid

gauge-gravity models, and discuss their phenomenology in view of FCNC data in section 4.

Section 5 contains the phenomenological consequences of a variant of FN models with holo-

morphic zeros. In section 6 we discuss general properties of gauge mediation in the context

of flavor constraints and comment on hidden sector effects. We conclude in section 7. The

appendix contains details on the effects of MSSM renormalization group running.

2 FCNC constraints on SUSY parameters

New physics at the TeV scale could lead to enhancement of FCNC processes by orders

of magnitude. The fact that such an enhancement has not been observed in any of the

s → d, c → u, b → d and b → s transitions gives strong constraints on the flavor structure

of the new physics. We discuss constraints on SUSY parameters from gluino loops in

section 2.1 and from chargino contributions in section 2.2. The impact of rare decays and

the constraints that arise at large tan β are covered in section 2.3.

2.1 Gluino contributions

In the supersymmetric framework, the following combinations of parameters are strongly

constrained by processes involving qi → qj transitions:

δq
ij =

1

m̃2
q

∑

α

Kq
iαKq∗

jα∆m̃2
qα

. (2.1)

Here Kq
iα is the mixing angle in the coupling of the gluino (and similarly the bino and

neutral wino) to qi − q̃α, m̃2
q = 1

3

∑3
α=1 m̃2

qα
is the average squark mass-squared, and

∆m̃2
qα

= m̃2
qα

− m̃2
q. Using the unitarity of the mixing matrix K, we can write

m̃2
qδ

q
ij =

∑

α

Kq
iαKq∗

jα(∆m̃2
qα

+ m̃2
q) = (M̃2

q )ij , (2.2)
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q ij (δq
ij)A 〈δq

ij〉
d 12 0.03 0.002

d 13 0.2 0.07

d 23 0.6 0.2

u 12 0.1 0.006

Table 1. The phenomenological upper bounds on (δq
ij)A and on 〈δq

ij〉, where q = u, d and A = L, R.

The constraints are given for mq̃ = 1TeV and x ≡ m2
g̃/m2

q̃ = 1. We assume that the phases could

suppress the imaginary parts by a factor ∼ 0.3. The bound on (δd
23)R is about 3 times weaker

than that on (δd
23)L (given in table). The constraints on (δd

12,13)A, (δu
12)A and (δd

23)A are based on,

respectively, refs. [9, 10] and [11].

where M̃2
q is the mass-squared matrix for the squarks q̃ in the basis where the quark q

masses and the gluino couplings are diagonal.

The mass-squared matrices carry also chirality indices, M,N = L,R, i.e. (M̃2
q )MN

ij

is the q̃†Miq̃Nj mass-squared term. Correspondingly, the δq
ij are assigned chirality indices,

namely the FCNC constrain (δq
ij)MN . In the case that the q̃L− q̃R mixing can be neglected,

there are four classes of (δq
ij)M ≡ (δq

ij)MM : (δd
ij)L for the left-handed down squarks D̃L,

(δu
ij)L for the left-handed up squarks ŨL, (δd

ij)R for the right-handed down squarks D̃R,

and (δu
ij)R for the right-handed up squarks ŨR. We also define

〈δq
ij〉 =

√
(δq

ij)L(δq
ij)R. (2.3)

In some cases, a two generation effective framework is useful. To understand that,

consider a case where (no summations over i, j, k):

|KikK
∗
jk| ≪ |KijK

∗
jj|,

|KikK
∗
jk∆m̃2

qkqi
| ≪ |KijK

∗
jj∆m̃2

qjqi
|, (2.4)

where ∆m̃2
qjqi

= m̃2
qj
− m̃2

qi
. Then the contribution of the intermediate q̃k can be neglected

and, furthermore, to a good approximation, KiiK
∗
ji+KijK

∗
jj = 0. For these cases, we obtain

δq
ij =

∆m̃2
qjqi

m̃2
q

Kq
ijK

q∗
jj . (2.5)

It is further useful to use instead of m̃q the following average mass scale [8]:

m̃q
ij =

1

2
(m̃qi

+ m̃qj
). (2.6)

Constraints of the form δq
ij ≪ 1 imply that either quasi-degeneracy (∆m̃2

qiqj
≪ m̃q2

ij ) or

alignment (|Kq
ij | ≪ 1) or a combination of the two mechanisms is at work. We use the con-

straints obtained in refs. [9–11]. They are presented in table 1. Wherever relevant, we allow

a mild phase suppression in the mixing amplitude, namely we quote the stronger between

the bounds on Re(δq
ij) and 3Im(δq

ij). We would like to emphasize the following points:

– 3 –
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1. The bounds have a strong dependence on the average squark mass, scaling roughly

as mq̃/(1 TeV).

2. The bounds have a milder dependence on the ratio x ≡ m2
g̃/m

2
q̃ . In particular, for

x = 4, the bound on (δd
12)A (〈δd

12〉) is weakened to 0.06 (0.003).

3. If we allow an arbitrarily strong suppression of the CP violating phases, some bounds

are further relaxed. For example, with zero phase, mq̃ = 1TeV and x = 1, we have

〈δd
12〉 ≤ 0.004.

4. The bounds compiled in table 1 are based on conservative estimates. At large tan β

the bounds can be significantly stronger and are more model-dependent, see sec-

tion 2.3.

2.2 Chargino contributions

Chargino contributions could also be of interest. If tanβ is not very large, then for the

various processes of interest the charged higgsino contributions are suppressed by small

Yukawa couplings. We focus then on the charged wino contributions to di → dj transitions,

which involve intermediate ũLα squarks. Now the following combination is constrained (we

omit here the chirality index L):

δcu
ij =

1

m̃2
u

∑

α

Zu
iαZu∗

jα∆m̃2
uα

. (2.7)

Here Zu
iα is the mixing angle in the coupling of the wino to di − ũα (both ‘left-handed’).

Note that

m̃2
uδcu

ij =
∑

α

Zu
iαZu∗

jα(∆m̃2
uα

+ m̃2
u) = (M̃ c2

u )ij , (2.8)

where M̃ c2
u is the mass-squared matrix for the left-handed up squarks ũL in the basis where

the down quark masses and the gluino couplings are diagonal. Note that δcu
ij 6= δu

ij . In

particular,

Zu = V †Ku, (2.9)

where V denotes the CKM quark mixing matrix.

Consider, for example, δcu
12 and assume that the conditions for an effective 2-flavor

framework, eq. (2.4), hold. Then, defining sin θ̃u ≡ Ku
12, we obtain

m̃2
uδcu

12 =
1

2
sin(2θ̃u − 2θc)∆m̃2

u2u1
, (2.10)

where θc denotes the Cabibbo angle. On the other hand,

m̃2
uδu

12 =
1

2
sin(2θ̃u)∆m̃2

u2u1
. (2.11)

Given a bound on (δd
ij)L from gluino loops, by SU(2) symmetry there is a corresponding

bound on δcu
ij (see section 3.2 for details). The latter is often stronger than the bound
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from chargino contributions by approximately a factor of (α3/α2), though there is further

dependence on the gaugino masses via known loop functions.

If the mixing angles are small, eq. (2.10), in general involving arbitrary two generations,

can be linearized and yields

δcu
ij = δu

ij + V ∗
ji

∆m̃2
ujui

m̃2
u

. (2.12)

This decomposition is commonly used to constrain δu through chargino interactions in rare

processes, e.g., [12]. The separation into ’flavor diagonal’ and δu-induced terms, however,

is not useful in models where there are cancelations between Ku and the CKM matrix el-

ements.

2.3 ∆B = 1 processes and large tan β

A multitude of ∆B = 1 decay observables has been measured so far [13]. The most

interesting ones for the purpose of constraining new physics parameters are those which

have reasonable theoretical and experimental uncertainties, and depend only on a small

set of model parameters. Given these requirements, very useful modes are radiative and

(semi)-leptonic decays mediated by b → qγ and b → qℓ+ℓ− for ℓ = e, µ and q = d, s.

Currently, theory gives preference to inclusive versus exclusive decays, although the purely

leptonic and very rare B → ℓ+ℓ− decays are also important. Future data on dedicated

distributions and asymmetries in FCNC exclusive decays, which will become available in

the LHC era [11], will also be of relevance.

For the constraints on δd
23 in table 1, data on B → Xsℓ

+ℓ−, B → Xsγ decays and

Bs mixing has been employed. For the radiative and semileptonic b → d decays, the

experimental situation is currently not as good as for b → s decays, and only Bd mixing

has been used to limit δd
13.

The impact of ∆B = 1 versus ∆B = 2 processes for the bounds on the δq param-

eters has a complex dependence on the model parameters. For example, for (δd
23)R, the

strongest constraint comes from ∆B = 2, whereas for (δd
23)L and 〈δd

23〉 the rare B → Xsγ

and B → Xsℓ
+ℓ− decays strengthen the bounds from meson mixing and, for some regions

of the parameter space, even provide the best limits, see e.g. [14] for a study with small to

moderate tan β.

We now consider more model-dependent bounds arising for large tan β, where also the

B → ℓ+ℓ− decays come into play. The dependence of the δd
23-bounds on tan β and SUSY

mass terms can be seen, e.g., in [15].

An important mechanism for tan β enhancements are Higgs penguins, magnifying

gluino loops with down squark flavor mixing in ∆B = 1, notably B → µ+µ− decays,

and ∆B = 2 processes, e.g., [16]. Using the recent 95% C.L. bounds on the branching

ratios, B(Bd → µ+µ−) < 1.8 · 10−8 and B(Bs → µ+µ−) < 5.8 · 10−8 [17], we obtain for

tan β = 30, x = 1 and A = L,R

|(δd
13)A| < 0.04 ·

(
MA0

200GeV

)2

, |(δd
23)A| < 0.06 ·

(
MA0

200GeV

)2

, (2.13)

– 5 –
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where MA0 denotes the pseudoscalar Higgs mass. The bounds scale very roughly as

(30/ tan β)3, and also depend via non-holomorphic corrections on the higgsino parame-

ters. Since the experimental limits are a factor of ∼ 10 (100) away from the corresponding

Standard Model branching ratios for Bs(Bd) → µ+µ− decays, the bound on δd
23 is more

constraining than the one on δd
13.

Bounds in a similar ballpark can be obtained from neutral Higgs exchange effects in

Bs and Bd mixing (for tan β = 30, x = 1) [16]:

〈δd
13〉 < 0.01 ·

(
MA0

200GeV

)
, 〈δd

23〉 < 0.04 ·
(

MA0

200GeV

)
, (2.14)

which scale roughly as (30/ tan β)2.

The constraints in eq. (2.13) and eq. (2.14) can be stronger than those given in table 1,

but can be evaded by large MA0 and by small tan β. Note that the mixing bounds decouple

slower than the B → µ+µ− ones , so in order to have large effects in the rare decays, either

a very large tan β or a very light Higgs is required, or a hierarchy between the (δd
i3)L and

(δd
i3)R parameters such that 〈δd

i3〉 is small.

3 Hybrid gauge-gravity mediation

Ref. [1] has considered a mediation mechanism that allows non-MFV contributions to the

soft supersymmetry breaking terms, yet flavor changing terms are naturally suppressed.

The basic assumption is that the gauge-mediated contributions are dominant, but gravity-

mediated contributions are non-negligible. The structure of the latter is, however, not

arbitrary. An approximate Abelian symmetry which explains the smallness and the hierar-

chy of the Yukawa couplings (the Froggatt-Nielsen mechanism) dictates at the same time

a flavor structure for the soft terms.

In this section, we analyze the predictions of this framework for the flavor changing

δq
ij parameters. We write down the high scale soft terms in section 3.1, and include effects

from renormalization group evolution (RGE) in section 3.2. Therein we also present the

low energy δq parameters in hybrid mediation. Mass splittings and flavor mixing matrices

are considered in section 3.3.

3.1 Gauge and gravity soft breaking

The soft breaking terms for the squarks have then the following form, at the scale of gauge

mediation, mM :

M2
Q̃L

(mM ) = m̃2
QL

(1 + rXQL
),

M2
D̃R

(mM ) = m̃2
DR

(1 + rXDR
),

M2
ŨR

(mM ) = m̃2
UR

(1 + rXUR
), (3.1)

where r . 1 parameterizes the ratio between the gravity-mediated and the gauge-mediated

contributions, and is discussed further in section 6. While the gauge-mediated initial con-

ditions are flavor blind, the structure of the XqA
matrices, coming from gravity mediation,

is subject to the selection rules of the FN symmetry.

– 6 –
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The diagonal terms of the XqA
matrices are never suppressed by the horizontal sym-

metry. On the other hand, the off-diagonal entries are suppressed whenever the two cor-

responding generations carry different H-charges. Within the simplest FN models, with a

single horizontal U(1)H symmetry, the parametric suppression of the off-diagonal terms is

related to that of the quark parameters:

(XqL,R
)ii ∼ 1, (XqL

)ij ∼ |Vij |, (XqR
)ij ∼

mqi
/mqj

|Vij |
(i < j), q = U,D. (3.2)

The “∼” sign here means “of the same parametric suppression as” but with generally

different O(1) complex coefficients.

The squark mass-squared matrices M
2
q̃A

then have the following form:

M
2
D̃L

= M2
Q̃L

+ DDL
1 + mDm†

D,

M
2
ŨL

= M2
Q̃L

+ DUL
1 + mUm†

U ,

M
2
D̃R

= M2
D̃R

+ DDR
1 + m†

DmD,

M
2
ŨR

= M2
ŨR

+ DUR
1 + m†

UmU , (3.3)

where mU,D are the up and down quark mass matrices in the flavor basis, DqA
are the D-

term contributions and all quantities should be evaluated at the electroweak scale µ ∼ mZ .

We assume that r > y2
t |Vts|2 ∼ 0.002, so that the gravity-mediated contributions are

non-negligible.

3.2 Flavor breaking at mZ

The initial conditions (3.1) hold at the scale of gauge mediation, mM , and the flavor

relations (3.2) hold at the scale of gravity mediation, the Planck mass mPl. We are, however,

interested in the predictions for the (δq
ij)A parameters, requiring soft terms evaluated at the

electroweak scale. We thus need to take into account the effects of renormalization group

evolution. A detailed discussion of the RGE is given in appendix A. The final conclusions

are the following:

(i) Starting from the soft squark masses at the scale mM of the form given in eq. (3.1), the

soft squark masses at the scale mZ can be written in the following approximate form:

M2
Q̃L

(mZ) ∼ m̃2
QL

(r31 + cuYuY †
u + cdYdY

†
d + rXQL

),

M2
ŨR

(mZ) ∼ m̃2
UR

(r31 + cuRY †
u Yu + rXUR

),

M2
D̃R

(mZ) ∼ m̃2
DR

(r31 + cdRY †
d Yd + rXDR

), (3.4)

where Yu and Yd denote the up and down quark Yukawa matrices in the flavor basis.

(ii) The relations between the off-diagonal elements (XqL,R
)ij and the quark parameters,

given in eq. (3.2), are either RGE-invariant to a good approximation, or changed

by factors of O(1). In any case, the relations between the parametric suppressions

remain the same, and one should simply use the low energy values of |Vij | and of

mqi
/mqj

to estimate the low energy values of (XqL,R
)ij .

– 7 –
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(iii) We define the factor r3 via the RGE correction to the diagonal elements of the soft

squark mass matrices (M2
q̃A

)ii:

m̃2
12(µ = mZ) = r3m̃

2
12(µ = mM ), (3.5)

with the average diagonal mass-squared defined as

m̃2
ij ≡

1

2

(
(M2

q̃A
)ii + (M2

q̃A
)jj
)
. (3.6)

In writing eqs. (3.5) and (3.6) with the same m̃2
12 and r3 for all three sectors

(Q̃L, ŨR, D̃R) we take into account that the dominant contribution to the initial

squark soft masses and to their RGE is QCD-induced and, in the limit that we

neglect the electroweak gauge couplings, is universal among all squarks. Numerically,

r3 is of O(1−10), depending on the initial conditions and the scale of supersymmetry

breaking. Details on r3 in gauge mediation are given in section 6. In minimal

models, typically r3 ∼ 3.

(iv) The coefficients cu, cd, cuR, cdR are of order [5/(16π2)] ln(mM/mZ) and can be

O(1) for mM ∼ mGUT (see, e.g. ref. [18] for numerical formulae). All coefficients

cu, cd, cuR, cdR < 0. Hence, the Yukawa corrections reduce the low energy values of

the diagonal (M2
q̃A

)33 entries with respect to the high energy ones. Note that we

neglect subdominant (MFV) terms with higher powers of the Yukawa couplings; the

general form of the MFV soft terms is given in ref. [19].

Before we derive our order of magnitude estimates for the various δq
ij parameters, two

comments are in order:

1. In the following we use the various m̃2
ij(mZ) to evaluate the denominator of the

(δq
ij)A parameters instead of using the physical mass average as in section 2. In this

way we neglect D-terms of O(m2
Z/m̃2

ij) and F -terms of at most O(m2
t /m̃

2
i3). It is

straightforward to include such corrections into our analysis, but since the flavor

pattern from FN gravity is only accurate up to order one numbers, this does not

improve the precision of our predictions.

2. Eq. (3.4) is written in the flavor basis. We can read off the δq parameters after rotating

the squarks by the same transformation that brings the quarks to mass eigenstates,

see eq. (2.2). This rotation does not change the parametric suppression of the Xij

terms, and therefore we can still use the estimates (3.2) in the new basis. The rotation

can affect the order one coefficients in these terms, but these are unknown anyway.

We now write the low energy values of the entries in the squark mass matrices in the

basis where the quark mass matrices and gluino couplings are diagonal. We are interested

in models with r > y2
t |Vts|2, in which case the gravity-mediated contributions are non-

negligible (see below). We can thus neglect all Yukawa couplings except third generation

ones. For MFV contributions, we use notations such as Vtd to denote the actual contributing

CKM element. For the non-MFV contributions, where there is uncertainty of order one,

– 8 –
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we use, for example, the notation V13 to represent parametric suppression that is similar

to that of Vub or Vtd. We obtain (q = U,D, i 6= 3):

(M̃2
q̃L

(mZ))33 ∼ m̃2
QL

(r3 + cuy2
t + cdy

2
b + r),

(M̃2
q̃L

(mZ))ii ∼ m̃2
QL

(r3 + r),

(M̃2
ŨL

(mZ))12 ∼ m̃2
QL

(cdy
2
bVubV

∗
cb + r|V12|),

(M̃2
ŨL

(mZ))i3 ∼ m̃2
QL

(cdy
2
bVibV

∗
tb + r|Vi3|),

(M̃2
D̃L

(mZ))12 ∼ m̃2
QL

(cuy2
t VtsV

∗
td + r|V12|),

(M̃2
D̃L

(mZ))i3 ∼ m̃2
QL

(cuy2
t VtbV

∗
ti + r|Vi3|). (3.7)

Hence, with r ≪ r3,

(δu
12)L ∼ |V12|

r3
max(r, cdy

2
b |VubV

∗
cb/V12|) ∼ r

|V12|
r3

,

(δd
12)L ∼ |V12|

r3
max(r, cuy2

t |VtsV
∗
td/V12|) ∼ r

|V12|
r3

,

(δu
i3)L ∼ |Vi3|

r3
max(r, cdy

2
b ) ∼ r̂

|Vi3|
r3

,

(δd
i3)L ∼ |Vi3|

r3
max(r, cuy2

t ) ∼
|Vi3|
r3

,

δcu
i3 ≃ (δd

i3)L, (3.8)

where

r̂ ≡ max{r, y2
b }. (3.9)

Given that y2
b ∼ 0.001 tan2 β, the distinction between r̂ and r is important only if tan β

is large.

We can now explain our choice to focus on the region of r > y2
t |Vts|2. If r were smaller

than that, then MFV contributions would dominate (δd
12)L and, for tan β & 10, also (δu

12)L.

For the (δq
ij)R, q = U,D we obtain i 6= 3, j = 1, 2, 3:

(M̃2
ŨR

(mZ))33 ∼ m̃2
UR

(r3 + cuRy2
t + r),

(M̃2
D̃R

(mZ))33 ∼ m̃2
DR

(r3 + cdRy2
b + r),

(M̃2
q̃R

(mZ))ii ∼ m̃2
qR

(r3 + r),

(M̃2
q̃R

(mZ))ij ∼ m̃2
qR

r
mqi

mqj
|Vij|

, (3.10)

hence

(δq
ij)R ∼ r

r3

mqi

mqj
|Vij |

. (3.11)

We finally obtain the order of magnitude estimates for the δq
ij parameters presented in

table 2. We would like to emphasize the following points:
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q ij (δq
ij)L (δq

ij)R 〈δq
ij〉

d 12 (r/r3)|V12| ∼ 0.08r (r/r3)(md/ms)
|V12|

∼ 0.08r (r/r3)
√

md/ms ∼ 0.08r

d 13 |V13|/r3 ∼ 0.001 (r/r3)(md/mb)
|V13|

∼ 0.08r
√

rmd/mb/r3 ∼ 0.01
√

r

d 23 |V23|/r3 ∼ 0.01 (r/r3)(ms/mb)
|V23|

∼ 0.2r
√

rms/mb/r3 ∼ 0.05
√

r

u 12 (r/r3)|V12| ∼ 0.08r (r/r3)(mu/mc)
|V12|

∼ 0.003r (r/r3)
√

mu/mc ∼ 0.02r

u 13 (r̂/r3)|V13| ∼ 0.001r̂ (r/r3)(mu/mt)
|V13|

∼ 0.0006r
√

rr̂mu/mt/r3 ∼ 0.0009
√

rr̂

u 23 (r̂/r3)|V23| ∼ 0.01r̂ (r/r3)(mc/mt)
|V23|

∼ 0.03r
√

rr̂mc/mt/r3 ∼ 0.02
√

rr̂

Table 2. The order of magnitude estimates for (δd,u
ij )L,R and 〈δd,u

ij 〉 in the hybrid gauge-gravity

models. The numerical estimates are obtained using quark masses at the scale mZ [20], and taking

r3 = 3. All results scale as (3/r3).

1. The RGE suppresses the flavor violating δq parameters.

2. The values of (δd
i3)L are independent of r. The reason for this are the RGE-induced

O(y2
t ) terms which dominate the gravity-mediated ones of order r.

3. The values of 〈δq
ij〉 are independent of the CKM parameters.

One of the issues that we are trying to clarify is whether one can differentiate between

MFV and non-MFV mediation of supersymmetry breaking. Indeed, our framework gives

contributions to (δq
ij)R that cannot be achieved in MFV models. The parameters (δd

ij)L,

however, receive a contribution from MFV initial conditions (such as pure gauge media-

tion), which is CKM induced and of the order (VtjV
∗
ti/r3)[y

2
t /(16π

2)] ln(mM/mZ) times a

numerical factor of O(5) (see appendix A). For j = 3 this is the dominant contribution

and, therefore, (δd
i3)L itself is not indicative of hybrid mediation. For r < y2

t |Vts|2, even the

(δd
12)L would be dominated by the MFV contribution. A similar comment applies to (δu

ij)L
for large tan β due to the VibV

∗
jby

2
b induced RGE contribution.

3.3 Splittings and mixing

A flavor changing δij parameter depends on three factors: the overall squark mass scale

m̃ij , the mass splitting ∆m̃2
ij , and the mixing angle Kij . While low energy measurements

of FCNC processes are sensitive only to the δq
ij parameters, high-pT experiments can,

in principle, measure each of these three ingredients separately, hence providing further

information regarding the supersymmetric flavor structure [1]. It is thus of interest to

estimate ∆m̃2
ij/m̃

2
ij and Kij in our hybrid gauge-gravity framework.

Investigation of eqs. (3.7), (3.10) and the analysis of appendix A leads to the following

estimates of the mZ-scale mass splittings:

∆m̃2
12

m̃2
12

∼ r/r3 (D̃L, ŨL, D̃R, ŨR) ,

∆m̃2
i3

m̃2
i3

∼
{

1/r3 (D̃L, ŨL, ŨR)

r̂/r3 (D̃R)
for i 6= 3. (3.12)
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As concerns the mixing matrices, they depend on the unitary matrices that diagonalize

the various quark and squark mass matrices. We define:

V d
LmDV d†

R = diag(md,ms,mb),

V u
L mUV u†

R = diag(mu,mc,mt),

Ṽ d
AM

2
D̃A

Ṽ d†
A = diag(m̃2

d̃A1

, m̃2
d̃A2

, m̃2
d̃A3

),

Ṽ u
AM

2
ŨA

Ṽ u†
A = diag(m̃2

ũA1
, m̃2

ũA2
, m̃2

ũA3
), (3.13)

where A = L,R. We obtain for the mixing matrices relevant in neutral gaugino couplings

Kq
A = V q

AṼ q†
A , (3.14)

and for the quark mixing matrix:

V = V u
L V d†

L . (3.15)

The parametric suppression of the off-diagonal terms in V q
A in the FN basis (that is, the

basis where the FN charges are well-defined) is determined by the quark flavor parameters:

(V d
L )ij ∼ |Vij |,

(V u
L )ij ∼ |Vij |,

(V d
R)ij ∼

mdi
/mdj

|Vij |
,

(V u
R )ij ∼

mui
/muj

|Vij |
. (3.16)

The parametric suppression of the off-diagonal terms in Ṽ q
A in the FN basis is determined

by r and by the quark flavor parameters:

(Ṽ d
L )12 ∼ |V12|, (Ṽ d

L )i3 = (V u
L )i3 + O(r̂|Vi3|),

(Ṽ u
L )12 ∼ |V12|, (Ṽ u

L )i3 = (V u
L )i3 + O(r̂|Vi3|),

(Ṽ d
R)12 ∼ md/ms

|V12|
, (Ṽ d

R)i3 = (V d
R)i3 + O

(
r(mdi

/mb)

r̂|Vi3|

)
, (3.17)

(Ṽ u
R )12 ∼ mu/mc

|V12|
, (Ṽ u

R )i3 = (V u
R )i3 + O

(
r(mui

/mt)

|Vi3|

)
.

We note the following points, which can be further understood on the basis of our analysis

in appendix A:

1. In the up quark mass basis, (Ṽ d
L )i3 ∼ (Ṽ u

L )i3 ∼ r̂|Vi3|. The reason is that in this basis

the YuY †
u term in the RGE is diagonal, and the leading non-diagonal contribution

is either the r-suppressed gravity-mediated contribution or the y2
b -suppressed MFV

contribution.

2. In the up quark mass basis, (Ṽ u
R )i3 ∼ r(mui

/mt)/|Vi3|. The reason is that in this ba-

sis the Y †
u Yu term in the RGE is diagonal, and the leading non-diagonal contribution

is the r-suppressed gravity-mediated contribution.
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3. In the down quark mass basis, (Ṽ d
R)i3 ∼ (r/r̂)(mdi

/mb)/|Vi3|. The reason is that

in this basis the Y †
d Yd term in the RGE is diagonal, and the leading non-diagonal

contribution is the r-suppressed gravity-mediated contribution.

We thus find

(Kd
L)12 ∼ |V12|, (Kd

L)i3 ∼ |Vti|,
(Ku

L)12 ∼ |V12|, (Ku
L)i3 ∼ r̂|Vi3|,

(Kd
R)12 ∼ md/ms

|V12|
, (Kd

R)i3 ∼ r(mdi
/mb)

r̂|Vi3|
,

(Ku
R)12 ∼ mu/mc

|V12|
, (Ku

R)i3 ∼ r(mui
/mt)

|Vi3|
. (3.18)

4 Phenomenological consequences

By comparing the phenomenological constraints of table 1 to the theoretical order of mag-

nitude predictions of the hybrid gauge-gravity models of table 2, we can put an upper

bound on r and on r̂, and describe the possible FCNC effects of the model. The strongest

bound on r comes from the 〈δd
12〉 parameter, and it reads

r/r3 . 0.01 − 0.03. (4.1)

We use here mq̃ = 1 TeV; the bounds would be stronger by mq̃/(1 TeV) for lighter mq̃. The

stronger bound corresponds to x = 1 and a phase of order 0.3, while the weaker bound

corresponds to x = 4 and a phase smaller than 0.1. The r̂ parameter affects only the δu
i3

parameters, so there is no phenomenological constraint on its size, and it is only bounded

by its definition:

r ≤ r̂ . 1. (4.2)

For small values of tan β, r̂ = r and eq. (4.1) applies to r̂. Inserting r/r3 . 0.03 and r ≤
r̂ . 1 into the predictions of table 2, we obtain the upper bounds on the δq

ij given in table 3.

We then learn that the maximal possible effects in the neutral Bd, Bs and D systems,

are as follows (for r3 = 3):

Bd : |M susy
12 /M exp

12 | . 0.002,

Bs : |M susy
12 /M exp

12 | . 0.005, (4.3)

D : |M susy
12 /M exp

12 | . 0.05.

Note that for D-meson mixing, we use for M exp
12 the experimental upper bound. The

stronger this bound will become, the more significant role the SUSY contribution can play.

We emphasize the following points:

1. The bound in the D system comes from 〈δu
12〉 and is r3 independent.

2. For r3 = O(1− 10), the bound in the Bs system comes from 〈δd
23〉 and scales as 3/r3.
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q ij (δq
ij)L (δq

ij)R 〈δq
ij〉

d 12 0.007 0.007 0.007

d 13 [0.001] 0.007 0.003

d 23 [0.01] 0.01 0.01

u 12 0.007 0.0003 0.001

u 13 0.001 0.00005 0.0003

u 23 0.01 0.003 0.006

Table 3. The order of magnitude upper bounds on (δd,u
ij )L,R and 〈δd,u

ij 〉 for r/r3 . 0.03. Entries in

parenthesis are independent of r, therefore representing estimates rather than upper bounds, and

scale as (3/r3). The bounds on 〈δd
13,23〉 scale as

√
3/r3. The bounds on (δu

i3)L [〈δu
i3〉] correspond to

r̂ ∼ 1 and scale as (3/r3) [
√

3/r3]; if r̂ = r, these bounds are a factor of 10 [
√

10] stronger and do

not scale with r3.

2 4 6 8 10
r3

0.500

0.100

0.050

0.010

0.005

¡M12
susy¥

¡M12
exp¥

Figure 1. Maximum reach in Bd (solid) and Bs (dashed) mixing, |M susy
12 /M exp

12 |, as a function of

the RGE-factor r3. The uppermost two curves correspond to tanβ = 30 and MA0 = 200 GeV.

3. For r3 = O(1 − 5), the bound in the Bd system comes from 〈δd
13〉 and scales as 3/r3.

For r3 > 5, the bound comes from (δd
13)R and does not scale with r3.

For large tan β and low MA0, the Bd,s mixing amplitudes can be significantly enhanced,

as discussed in section 2.3. Comparing the phenomenological constraints of eq. (2.14) to

table 2, we obtain for r3 = 3 (and tan β = 30, MA0 = 200GeV):

Bd : |M susy
12 /M exp

12 | . 0.10, (4.4)

Bs : |M susy
12 /M exp

12 | . 0.13.

The r3 dependence of upper bounds on the supersymmetric contributions to Bd and Bs

mixings is shown in figure 1.
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We now discuss where further signals of this non-MFV scenario could arise. While

the bounds from eq. (2.13) and (2.14) can be evaded for suitable values of MA0 and tan β,

they indicate on the other hand that in FN gravity models an observation of Bd,s → µ+µ−

decays is possible near their current experimental limits. This itself is, however, not a

unique sign of our model, since it can happen also in the MFV MSSM at large tan β,

e.g., [21]. One crucial difference is the breakdown of MFV relations between b → s and

b → d, such as in B → µ+µ− decays [22]. We find for the ratio Rµµ

Rµµ =
B(Bs → µ+µ−)

B(Bd → µ+µ−)
∼

mBsf
2
Bs

τBs

mBd
f2

Bd
τBd

× rps ×





|Vts|2

|Vtd|2
for (MFV, (δd

i3)L),
|msVtd|

2

|mdVts|2
for ((δd

i3)R),
ms

md
for (〈δd

i3〉),
(4.5)

where fBq , mBq and τBq denote the decay constant, mass and lifetime of the Bq, q = d, s,

respectively, and rps collects all further, small (known) U-spin breaking of Rµµ related to

kinematical factors.

While stemming from qualitatively very different expressions, numerically the three

ratios in eq. (4.5) turn out to be similar, that is (from top to bottom), 25, 14 and 19,

using central values at mZ from [20]. Since we cannot distinguish the case with dominant

(δd
i3)L from MFV, some contribution from (δd

i3)R is required to identify non-MFV. If this is

the case, Rµµ is suppressed w.r.t. its MFV (and Standard Model) value. Since there is no

large hierarchy between Rµµ in the different scenarios, establishing the FN flavor quantum

numbers in this observable needs a measurement at the O(10%) level (3σ) and very good

control over fBs/fBd
.

We close with some general comments. Signals of a FN gravity contribution are those

of non-MFV models, that is, e.g., [23],

(i) beyond CKM CP-violation,

(ii) wrong chirality contributions to FCNCs, and

(iii) the breakdown of CKM-relations as in Rµµ.

Because the FN gravity model contains only a controlled amount of flavor violation, an

experimental verification needs precise measurements.

Since in FN gravity (δd
i3)R & (δd

i3)L, see table 3, the natural place to look for such

contributions is in right-handed currents. The sensitivity will be even higher if one looks in

addition for CP-violation. Potentially interesting here are CP asymmetries in B → K∗(→
Kπ)ℓ+ℓ− decays [24].

The impact of charged wino loops to b-physics observables is limited by (α2/α3) with

respect to the impact of (δd
i3)L, see eq. (3.8), and is hence sub-dominant. Charged higgsino

effects could be of interest at large tan β. Further study is needed.

Note that there is also the possibility of a light stop having a macroscopic lifetime of

order picoseconds, if the FCNC decay of t̃1 to charm plus the lightest neutralino induced

by δu
23 is sufficiently suppressed yet is the dominant decay mode [25]. The latter can be

arranged kinematically by a small mass splitting, ∆M , between the t̃1 and the lightest
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neutralino. In FN gravity a long-lived stop requires the lightest stop to be predominantly

left-handed and tan β to be small, such that (δu
23)L . 10−6 (mt̃1

/∆M). This gives an upper

bound r/r3 . 3 · 10−4 for ∆M/mt̃1
= 0.1, stronger than the one in eq. (4.1).

5 Holomorphic zeros

With a more complicated model employing the Froggatt-Nielsen mechanism, one

can suppress the supersymmetric mixing angles compared to the values given in

eqs. (3.16) and (3.17), while keeping the parametric suppression of the quark masses and

of the CKM angles consistent with the measured values [6]. The horizontal symmetry has

to be extended to, for example, U(1)1 × U(1)2, and holomorphic zeros must play a role.

At least one of the two horizontal U(1)’s is broken by a single spurion, and some of the

Yukawa couplings carry charge of the same sign as the spurion, and thus are forbidden by

holomorphy.

Originally, this mechanism was used to obtain phenomenologically viable models

without any squark degeneracy. However, recent improvements in the bound on the mass

splitting in the neutral D system imply that degeneracy between the first two generations

of squark doublets at the level of O(10%) or stronger is required (for squarks lighter than

TeV) [1, 10, 26].

Thus, in this section, we investigate the possibility of constructing such FN-type mod-

els, where the required minimal degeneracy comes from either the gauge-mediation domi-

nance or RGE or both. In particular, we ask what are the maximal possible effects in the

neutral D,Bd and Bs systems in such a framework.

It was proven in ref. [3] that, to obtain

(Kd
L)12 ≪ |V12|, (Kd

R)12 ≪ md/ms

|V12|
, (5.1)

(as necessary to relax the strong degeneracy requirement), while keeping the CKM elements

large enough, there should be four (and only four) specific holomorphic zeros in the down

quark mass matrix, leading to both lower and upper bounds on the supersymmetric mixing

angles. These bounds are given in table 4. The parameter ǫmax stands for the largest among

the spurions that break the horizontal FN symmetry. As before, for MFV contributions

(namely those that survive in the r = 0 limit) we use the notation Vti rather than Vi3. The

(Kd
L)i3 angles get comparable contributions from MFV and non-MFV sources, so we use

the Vi3 notations for these.

The analysis of the (Kd
L)12 requires some explanation. The d̃L − s̃L block of M̃2

D̃L
(mZ)

has the following form:

M̃2
D̃L

(mZ) ∼ m̃2
DL

(
r3 + rX11 cuy2

t V
∗
tdVts + rX12

cuy2
t VtdV

∗
ts + rX∗

12 r3 + rX22 + cuy2
t |Vts|2

)
. (5.2)

Here X11 and X22 are O(1) and different from each other, while X12 is taken to lie in

the range (0, |V12|ǫ2
max). We remind the reader that we restrict our analysis to the region

where r is larger than y2
t |Vts|2, so the latter term can be neglected in the (2,2) entry. The
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Mixing angle Lower bound Upper bound

(Kd
L)12 |VtdVts|/r ∼ 0.0005/r |V12|ǫ2

max ∼ 0.009

(Kd
R)12

md

ms
|V13V23| ∼ 9 · 10−6 md

ms|V12|
ǫ2
max ∼ 0.009

(Kd
L)13 |V13| ∼ 0.004 |V13| ∼ 0.004

(Kd
R)13

md

mb
|V13| ∼ 4 · 10−6 r

r̂
md

mb|V13|
ǫ2
max ∼ 0.009

(Kd
L)23 |V23| ∼ 0.04 |V23| ∼ 0.04

(Kd
R)23

ms

mb
|V23| ∼ 0.0008 r

r̂
ms

mb|V23|
ǫ2
max ∼ 0.02

(Ku
L)12 |V12| ∼ 0.2 |V12| ∼ 0.2

(Ku
R)12

mu

mc
|V12| ∼ 0.0005 mu

mc|V12|
∼ 0.009

Table 4. Bounds on the supersymmetric mixing angles in models of alignment with suppressed

(Kd
L,R)12. For the numerical estimates we use quark masses at the scale mZ [20] and take

r ≤ r̂ . 1, and ǫmax ∼ 0.2.

q ij (δq
ij)L (δq

ij)R 〈δq
ij〉

d 12 (r/r3)|V12|ǫ2
max ∼ 0.001 (r/r3)mdǫ2max

|V12|ms
∼ 0.001 (r/r3)

√
md/msǫ

2
max ∼ 0.001

d 13 |V13|/r3 ∼ 0.001 (r/r3)mdǫ2max

|V13|mb
∼ 0.001

√
r(md/mb) ǫmax/r3 ∼ 0.001

d 23 |V23|/r3 ∼ 0.01 (r/r3)msǫ2max

|V23|mb
∼ 0.002

√
r(ms/mb)ǫmax/r3 ∼ 0.006

u 12 (r/r3)|V12| ∼ 0.03 (r/r3)mu

|V12|mc
∼ 0.001 (r/r3)

√
mu/mc ∼ 0.006

Table 5. Upper bounds on the parametric suppression of (δd,u
ij )L,R and 〈δd,u

ij 〉 in the hybrid gauge-

gravity models with alignment and suppressed δd
12. For the numerical evaluation we take r/r3 ∼

0.13, r ≤ r̂ . 1 and r3 = 3. (δd
13,23)L scale as (3/r3), and 〈δd

13,23〉 scale as
√

3/r3.

lower bound on (Kd
L)12 corresponds to a negligibly small X12. The upper bound given

in the table corresponds to |X12| ∼ |V12|ǫ2
max and r & 0.05. For r . 0.05 it should be

replaced with |VtdVts|/r.
The δq

ij parameters are further suppressed by the mass splittings as in eq. (3.12).

Comparing this to table 1, we find that the strongest constraint on r/r3 comes from the

bound on 〈δu
12〉. We obtain

r/r3 . 0.13, (5.3)

in agreement with previous works [1, 10, 26]. Estimates for all δq
ij parameters are given in

table 5 (for r3 = 3).

We then learn that, in the case that holomorphic zeros play a role in making the

alignment accurate so that the degeneracy is weakest, the maximal possible effects in the

neutral Bd, Bs and D systems, are as follows (for r3 = 3):

Bd : |M susy
12 /M exp

12 | . 0.0004,

Bs : |M susy
12 /M exp

12 | . 0.0008, (5.4)

D : |M susy
12 /M exp

12 | . 1.
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Figure 2. The RGE-factor r3 as a function of the messenger scale for NM = 1 (lower curve) and

NM = 3 (upper curve).

Thus, the precise alignment further suppresses the new physics effect in the Bd and Bs

mixings. On the other hand, since — by construction — it does not affect the up sector, the

milder degeneracy allows large (and possibly CP violating) effects in the neutral D system.

6 Probing messengers

We now ask what the constraints derived from FCNC processes, specifically the upper

bound on r/r3 given in eq. (4.1), imply for the parameters of gauge mediation.

Given the soft parameters at the high scale, the RGE-factor r3 defined via eq. (3.5)

is calculable from the MSSM running of the soft squark masses, the one loop running of

which is also discussed in appendix A. Neglecting contributions from the electroweak gauge

couplings, one obtains an analytical expression for r3 (see, e.g., [27]):

r3 = r3(mM ) = 1 +
8

3π

(∫ ln(mM )

ln(mZ )
dt

α3
3(t)

α2
3(mM )

)
M2

3 (mM )

m̃2
12(mM )

. (6.1)

Here, M3 denotes the gluino mass and m̃2
12 is defined in eq. (3.6). In messenger mod-

els of gauge mediation, the ratio M2
3 /m̃2

12 is determined by a simple formula at the

scale of mediation:

M2
3 (mM )

m̃2
12(mM )

=
3

8
NM + O

[(
αi

α3

)2
]

, i = 1, 2, for q = QL, UR,DR, (6.2)

where NM denotes the number of color-triplet messengers. We explicitly see that in our

approximation, due to the universality of the initial conditions and the running, r3 is uni-

versal for QL, UR and DR soft masses. We depict r3 as a function of the messenger scale for

NM = 1 and NM = 3 in figure 2. It depends logarithmically on mM , and grows with NM .
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Figure 3. r/r3 as a function of the messenger scale for NM = 1 (upper curve) and NM = 3 (lower

curve) from eq. (6.3). The horizontal lines correspond to the FCNC upper bounds of eq. (4.1).

The parameter r introduced in the initial conditions of gauge-gravity models at the

messenger scale mM , eq. (3.1), can be expressed as a ratio of soft squark masses:

r =
m̃2

12−gravity

m̃2
12−gauge

∼
(

mM

mPl

)2( 4π

α3(mM )

)2 3

8

1

NM
, (6.3)

where mPl ∼ 1019 GeV denotes the Planck mass. In eq. (6.3) we again neglect contributions

other than from the strong interaction as well as running of the gravity-induced soft

terms above mM .

Eq. (4.1) implies the existence of an upper bound on the messenger scale or, in other

words, a minimal separation between the scales of gravity- and gauge-mediation. We find

that flavor physics determines this to be about three orders of magnitude, i.e., mM .

mPl/10
3. A larger number of messengers gives a heavier spectrum, and hence a weaker

bound. This is also illustrated in figure 3.

In writing eq. (6.3) we assumed that the highest F -term contributes to gauge mediation.

If this is not the case, r gets enhanced by 〈F 〉2/〈FM 〉2, the square of the ratio of the highest

F -term vev to the one that couples to the messengers. The flavor constraint eq. (4.1)

requires then a low mM , or, turning the argument around, indicates gravity-mediated

contributions can be non-negligible even if the scale of gauge mediation is low.

It has been pointed out recently that hidden sector effects modify in general the initial

conditions below which the known MSSM-RG equations apply [28]. If the hidden sector

is weakly interacting, then the effects are small and our analysis holds to this degree. If

the renormalization is non-perturbative, our analysis will depend on the unknown hidden

sector physics. A general framework, termed general gauge mediation, to account for this

has been outlined in [29].

Within general gauge mediation, our analysis is affected in the following ways:
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1. The relation between the gluino mass and the soft squark masses, eq. (6.2), can receive

order one corrections. The outcome of this for the example of a change of factor three

in the initial conditions is illustrated by the difference in the curves of figure 2. In

other words, we cannot calculate r3 without knowledge of the hidden sector.

2. The initial conditions for the soft squark masses, eq. (3.1), are not of perturbative

messenger gauge-mediation type. In particular, the soft masses for QL, UR and

DR are renormalized differently, and in general we need to introduce several

RGE-parameters r3. Note that, as in the minimal case, in the limit of α1, α2 → 0

we recover universality of soft masses and hence, of r3. Since the corrections arise in

full generality non-perturbatively, this might not be representing the true spectrum.

3. Unlike perturbative messenger mediation, general gauge mediation does not exclude

m̃2
12(mM ) < 0. Consequently, r3 < 1 becomes possible, see eq. (6.1). To avoid

a tachyonic spectrum, then, however, a very large RGE effect is required such

that r3 < 0.

4. We cannot express r in terms of messenger parameters as simply as eq. (6.3).

What, however, still remains valid in general gauge mediation is the form of eq. (3.1).

In particular, the hidden sector effects do not introduce further flavor violation into the

soft masses because gauge mediation respects the U(3)5 global flavor symmetry.

By not fixing r3 to a specific, minimal gauge-mediation value, we have hence mimicked

hidden sector effects in section 4.

7 Conclusions

We considered supersymmetric models where squark masses are dominated by gauge-

mediated contributions, yet gravity-mediated contributions are not negligible. Such a

situation arises when the messenger scale is not much below α3mPl, or when the F -term

that leads to gauge mediation is at a scale much lower than the highest F -term. We fur-

ther assumed that the gravity-mediated contributions follow selection rules that arise from

a Froggatt-Nielsen symmetry that explains the hierarchy in the Yukawa couplings. Such

models constitute an example of viable and natural supersymmetric models that are not

minimally flavor violating (non-MFV). The mass splittings and flavor decomposition of

sfermions can perhaps be directly measured in the ATLAS/CMS experiments [1].

We note that, except for the implications for flavor violation, the features of this model

are similar to those of purely gauge-mediated models. In particular, radiative electroweak

symmetry breaking occurs in the same way.

We posed here the question of whether measurements of FCNC processes, such as

neutral meson mixing, can show signals of such non-MFV models. We found that the

strongest bound on the mass splitting between the first two squark generations ∆m̃2
12/m̃

2
12

comes from K0 − K
0

mixing, and is of O(0.03). This splitting reflects the relative size of

the gravity- and gauge-mediated contributions which, at the mediation scale, gets lifted

by an inverse RGE-factor w.r.t. the physical splitting at the electroweak scale. We obtain

– 19 –



J
H
E
P
0
3
(
2
0
0
9
)
1
1
5

for the respective splitting at the mediation scale a value that is constrained to be below

O(0.1) for minimal gauge mediation with one messenger, or even as large as O(0.3) in

general gauge mediation, or with several messengers.

The slepton sector has also been studied within hybrid gauge-gravity mediation [1].

Assuming the simplest FN charge assignments, no parametric suppression of the 1-2

lepton mixing angle and minimal gauge mediation giving sleptons lighter than squarks,

the bounds from lepton flavor changing processes on the splittings are stronger than those

from the quarks.

Given the constraint on the splitting, the order of magnitude predictions that

follow from the FN symmetry, and the RGE effects, we evaluated the maximal possible

modifications to the Standard Model predictions to various FCNC processes. We found

that the effects on the Bd − Bd and Bs − Bs mixing amplitudes is generically below the

percent level, but can be of order ten percent for large tan β. It is maximized when the

RGE suppression is minimal.

On the other hand, the effect on the D0 − D
0

mixing amplitude can be O(1) (and

CP violating), though in the simplest models it is at most of order five percent. We found

also that the ratio of Bs → µ+µ− to Bd → µ+µ− branching ratios is sensitive to the FN

flavor symmetries.

Further possibilities to test FN gravity, that is, Planck scale physics, with rare decays

are pointed out. Particularly promising are searches for right-handed currents, if possible

even in conjunction with CP-violation.

When thinking about the future of experimental flavor physics, and evaluating the sen-

sitivity to new physics of, for example, a super-B factory [11, 31], a question that often arises

is the following: What experimental accuracy is worth achieving, given well-motivated

models of new physics as well as theoretical (QCD-related) uncertainties. Eqs. (4.3), (4.4)

and (5.4) provide a concrete answer – within a specific but well-motivated and natural

framework — to this question. An accuracy of order a few percent in measurements related

to neutral D, Bd or Bs mixing may be sensitive to new physics. Since the new physics that

we discuss introduces, in general, new CP violating phases of order one, a theoretically clean

signal for the new physics can be established by measuring CP asymmetries at that level.
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A RGE effects

In the appendix, we present the renormalization group equations for the quark and squark

parameters relevant to our framework. (General formulae are given in ref. [30].) We use

the following approximations:
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1. We neglect the RGE effects of the first and second generation Yukawa couplings

yu, yd, ys and yc.

2. We neglect the RGE effects that involve |Vts|2, |Vtd|2 and VtdV
∗
ts.

3. We neglect the effects of the off-diagonal elements in the squark mass-squared ma-

trices on the running of the diagonal terms.

(Within the special class of models discussed in section 5, some of these approximations

are not valid, and then we do include the relevant factors.)

We obtain for the CKM mixing angles [32]

16π2 d

dt
ln Vαβ =

{
−y2

t − y2
b for Vub, Vcb, Vtd, Vts

0 for Vud, Vus, Vcd, Vcs, Vtb
(A.1)

and for the Yukawa coupling ratios (or, equivalently, mass ratios)

16π2 d

dt
ln(yu/yc) = 0,

16π2 d

dt
ln(yc/yt) = −3y2

t − y2
b ,

16π2 d

dt
ln(yd/ys) = 0,

16π2 d

dt
ln(ys/yb) = −y2

t − 3y2
b ,

16π2 d

dt
ln[Vcb/(yc/yt)] = 2y2

t ,

16π2 d

dt
ln[Vcb/(ys/yb)] = 2y2

b . (A.2)

For the diagonal elements in the soft squark mass-squared matrices, we obtain

(i = 1, 2, 3)

16π2 d

dt
(M2

Q̃L
)ii = 2[(M2

Q̃L
)33 + (M2

ŨR
)33 + m2

Hu
]y2

t δi3

+2[(M2
Q̃L

)33 + (M2
D̃R

)33 + m2
Hd

]y2
b δi3 −

32

3
g2
3 |M3|2 + O(g2

2 , g2
1),

16π2 d

dt
(M2

ŨR
)ii = 4[(M2

ŨR
)33 + (M2

Q̃L
)33 + m2

Hu
]y2

t δi3 −
32

3
g2
3 |M3|2 + O(g2

2 , g
2
1),

16π2 d

dt
(M2

D̃R
)ii = 4[(M2

D̃R
)33 + (M2

Q̃L
)33 + m2

Hd
]y2

b δi3 −
32

3
g2
3 |M3|2 + O(g2

2 , g
2
1). (A.3)

For the off-diagonal terms involving the third generation, we obtain, in the super-CKM

basis (where gluino couplings and quark masses are diagonal), (i 6= 3)

16π2 d

dt
(M̃2

ŨL
)i3 = [(M2

Q̃L
)ii + (M2

Q̃L
)33 + 2(M2

D̃R
)33 + 2m2

Hd
]y2

bVibV
∗
tb + (y2

t + y2
b )(M̃

2
ŨL

)i3

16π2 d

dt
(M̃2

D̃L
)i3 = [(M2

Q̃L
)ii + (M2

Q̃L
)33 + 2(M2

ŨR
)33 + 2m2

Hu
]y2

t V
∗
tiVtb + (y2

t + y2
b )(M̃

2
D̃L

)i3

16π2 d

dt
(M̃2

ŨR
)i3 = 2y2

t (M̃
2
ŨR

)i3,

16π2 d

dt
(M̃2

D̃R
)i3 = 2y2

b (M̃
2
D̃R

)i3. (A.4)
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The 1 − 2 terms are, within our approximations, RGE invariant:

16π2 d

dt
(M2

Q̃L,ŨR,D̃R
)12 = 0. (A.5)

A.1 (δq
12)A

With our approximations (which hold much more generally than within our specific frame-

work), almost all parameters related to just the first two generations, and, in particular,

(M2
q̃A

)12, (M2
q̃A

)22 − (M2
q̃A

)11, (A.6)

are RGE invariant. In models (as ours) where |(M2
q̃A

)12| ≪ |(M2
q̃A

)22 − (M2
q̃A

)11|, eq. (A.6)

further implies the RGE invariance of

(Ṽ q
A)12, ∆m̃2

qA2qA1
. (A.7)

The only parameter related to the first two generations which is not RGE invariant is

the average squark mass. The universal QCD effect on the running of the diagonal mass-

squared terms is actually the only RGE effect that (for running from high scale, as in our

framework) can be significantly larger than one. This is taken into account by the factor

r3 defined in eq. (3.5). Numerical values within gauge mediation are discussed in section 6.

The parameters of interest for our purposes are the (δq
ij)A parameters. We analyze the

RGE implications on these parameters using the two generation approximation of eq. (2.5).

From eqs. (A.2), (A.7), (3.5) we learn that

(δq
12)A(µ = mZ) =

1

r3
(δq

12)A(µ = mM ). (A.8)

Within our framework, where the structures of the quark and squark mass matrices are

related by the FN symmetry, this leads to the values of the (δq
12)L as given in eq. (3.8) and

(δq
12)R as given in eq. (3.11).

A.2 (δq
i3)R

Within our approximation, we also find from eqs. (A.2) and (A.4) that the following two

combinations of squark and quark parameters are RGE invariant:

(M̃2
ŨR

)i3

(yui
/yt)/|Vcb|

,
(M̃2

D̃R
)i3

(ydi
/yb)/|Vcb|

(i = 1, 2). (A.9)

The RGE effects on the splittings are as follows (see eq. (A.3)):

[(M2
ŨR

)33 − (M2
ŨR

)ii](µ = mZ) ∼ m̃2
q,

[(M2
D̃R

)33 − (M2
D̃R

)ii](µ = mZ) ∼ r̂m̃2
q. (A.10)

These equations lead to the estimates of (Ṽ q
R)i3 given in eq. (3.17), (Kq

R)i3 as given in

eq. (3.18), and (δq
i3)R as given in eq. (3.11).
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A.3 (δq
i3)L

The situation regarding (δq
i3)L is less simple than the other cases. Here, eqs. (A.1) and (A.4)

imply, unlike the analogous case for q̃R (see eq. (A.9)), that (M2
Q̃L

)i3/|Vib| is not RGE

invariant. Consider first the ŨL sector, and assume for simplicity small tan β (so that the

y2
b -dependent terms in eq. (A.4) can be neglected):

16π2 d

dt
ln

(M2
ŨL

)i3

|Vib|
= 2(y2

t + y2
b ). (A.11)

For the relevant mass-squared difference, we obtain from eq. (A.3):

16π2 d

dt
[(M2

Q̃L
)33 − (M2

Q̃L
)ii] = 2[(M2

Q̃L
)33 + (M2

ŨR
)33 + m2

Hu
]y2

t

+2[(M2
Q̃L

)33 + (M2
D̃R

)33 + m2
Hd

]y2
b . (A.12)

The conclusion is that the RGE effects on both (Ṽ u
L )i3 and on |Vib| are O(1) and different

from each other. Yet, at low energy, in the up quark mass basis, we have (recall eq. (3.17)

is in the FN basis)

|(Ṽ u
L )i3| ∼ r|Vib|. (A.13)

When the MFV y2
b dependent terms are taken into account, we obtain eq. (3.17) for (Ṽ u

L )i3,

eq. (3.18) for (Ku
L)i3, and eq. (3.8) for (δu

i3)L.

Next consider the running of (M2
D̃L

)i3 in the down quark mass basis. The second term

on the right hand side of the relevant eq. (A.4) is smaller by a factor of O(r) than the first

and so |(Ṽ d
L )i3| ≈ |Vti|. Eqs. (3.18) for (Kd

L)i3, and (3.8) for (δd
i3)L follow.
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